D

™

Four Excellent Programs for Your ATARI® 800

0O CLOCK

| OzAP

O LOGO

O POLYGONS

No—this isn’t another digital clock!
It's an old-fashioned wall clock, with
chimes to charm you. And it keeps on
ticking . . .

Grab a joystick and try to zap the tar-
gets. Has an “attract” mode when you
don’t want to play. You'll also learn
how to use the ATARI[START]button in
your Basic programs. (Needs one joystick.)

A flashy demo that shows off the
ATARI color registers. Comes with a
subroutine that makes drawing pic-
tures easier.

Your ATARI constructs beautiful geo-
metric patterns.

16k memory needed when using
IRIDIS programs with cassette, and
24k needed with the ATARI 810 disk.

Published By:

The Code Box 550
w()rl(sTM Goleta, CA 93017

Comments

IRIDIS 1 is the first in a series of tutorials about the Atari
personal computer. Each one brings you four excellent programs
on cassette (or disk), ready to Run. You also receive this
printed Guide, which explains how to use the IRIDIS programs, as
well as the technical background about how they work, including
complete source code listings of selected programs.

There are two regular columns that we think you'’ll enjoy: "Novice
Notes” for the person that is brand new to computing, and
"Hacker's Delight” for the more advanced bit twiddlers. We think
that both beginners and old hands will find that studying IRIDIS
programs is one of the best ways to learn more about the Atari.

Please mnote that the programs in IRIDIS 1 require 16k of memory
if you are using the Atari 410 program recorder, or 24k when
using the Atari 810 disk.

Glen Fisher and Ron Jeffries
The Code Works

IRIDIS 1 Copyright (c) 1980 by The Code Works

All rights reserved. No part of this publication or the
accompanying computer programs may be reproduced, transmitted, or
stored in a retrieval system, in any form or by any means,
without the prior written permission of The Code Works, Box 550,
Goleta, Califormnia 93017

ATART is a registered trademark of Atari, Inc.

Clock

The CLOCK program draws an old-fashioned clock (the kind with
hands, and not little red numbers), and starts ticking off the
seconds. When you run the program, it first waits for you to
press [RETURN]. After you press [RETURN], there will be a short

delay while it sets up its time—keeping routime. Next, it asks
you to enter the time. Type the hour, minute, and second,
separated by commas. CLOCK accepts the time in either the normal
twelve—hour system, or the military-style twenty—four—hour time.
(In either case, it only displays twelve—hour time.)

CLOCK chimes the hours, just 1like your favorite grandfather
clock. It also sounds the quarter hours, with one tone for each
quarter—hour past the hour: one for quarter past, two for the
half hour, and three for quarter till the hour.

Note: since the CLOCK program insinuates itself into the Atari
operating system (to keep as accurate time as possible), you
should wuse [RESET] to stop the program. That will cause the
Atari to kick CLOCK out of the system again. Otherwise, the I/O
won't necessarily work.

0 REM CLOCK

1 REM COPYRIGHT(C) 1980 IRIDIS

2 REM BOX 550, GOLETA, CA. 93017

3 REM ALL RIGHTS RESERVED

10 REM AS OF 4 MAR 80

90 GOSUB 30000

100 PRINT " {CLEAR}"

110 DIM VO(59),HO(59),VI(59),HI(59)

120 DEG :CIRCLE=360

180 HCENT=160:VCENT=96 : LARGE=90:SMALL=60

200 GOSUB 4000

470 PRINT "{CLEAR 3 DOWN}":GOTO 490

480 PRINT "I don't understand that."

490 TRAP 480

500 PRINT :PRINT "Please enter the time:"

510 PRINT " (as HR,MIN,SEC): ";

520 INPUT HR,MIN, SEC

530 TRAP 65535

550 IF HR>12 THEN HR=HR-12

560 IF HR<1 OR HR>12 THEN PRINT "Hour must be from 1 to 12.":GOTO 490
570 IF MINKO OR MIN>59 THEN PRINT "Minutes must be from 0 to 59.":GOTO 490
580 IF SEC<K0 OR SEC>59 THEN PRINT "Seconds must be from 0 to 59.":GOTO 490
680 N=INT(MIN/12) :FIFTHHR=MIN-12*N:HR=HR*5+N

690 POKE 204,SEC:POKE 205,MIN:POKE 206 ,FIFTHHR:POKE 207,HR
700 GRAPHICS 24

710 SETCOLOR 4,8,0

720 SETCOLOR 2,8,0

730 SETCOLOR 1,8,14

740 COLOR 1

750 N=60:J=4

760 FOR I=0 TO N-1

770 V=-COS(CIRCLE*I/N)

780 H=SIN(CIRCLE*I/N)

790 HO(I)=INT(LARGE*H+HCENT)

800 VO(I)=INT(LARGE*V+VCENT)

810
820
830
840
850
900
910
1000
1010
1100
1110
1120
1125
1130
1140
1200
1210
1220
1300
1310
1320
1330
1410

1420

1800
1810
3000
3010
3020
3030
3040
3050
3060
4000
4005
4010
4020
4030
4040
4050
4100
4200
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009

PLOT INT(H* (LARGE+5)+HCENT) ,INT (V* (LARGE+5)+VCENT)

J=J+1:IF J=5 THEN DRAWTO INT(H*(LARGE+2)+HCENT),INT(V*(LARGE+2))+VCENT :J=0
HI(I)=INT(SMALL*H+HCENT)

VI(I)=INT(SMALL*V+VCENT)

NEXT I

SEC=PEEK (204) :MIN=PEEK (205) :HR=PEEK (207)
GOTO 1200

SEC=PEEK (204) :MIN=PEEK (205) : HR=PEEK (207)
COLOR 0

IF OLDSEC<>LASTMIN THEN PLOT HI(OLDSEC),VI(OLDSEC) :DRAWTO HO (OLDSEC) , VO (OLDSEC)
IF OLDMIN=MIN THEN 1300

PLOT HCENT,VCENT:DRAWTO HO (OLDMIN) ,VO(OLDMIN) :OLDMIN=MIN
I=MIN/15:IF I=INT(I) THEN QUARTER=1I

IF OLDHR<>HR AND MIN=0 THEN CHIME=HR/5:IF CHIME=0 THEN CHIME=12
IF OLDHR<>HR THEN PLOT HCENT,VCENT :DRAWTO HI(OLDHR) ,VI (OLDHR) : OLDHR=HR
COLOR 1

PLOT HCENT,VCENT:DRAWTO HI (HR),VI(HR)

PLOT HCENT,VCENT:DRAWTO HO (MIN),VO(MIN)

COLOR 1

IF SEC<>MIN THEN PLOT HI(SEC),VI(SEC):DRAWTO HO (SEC),VO(SEC)
OLDSEC=SEC:LASTMIN=MIN

SOUND 0,0,4,14:I=I+1:SOUND 0,0,0,0

IF CHIME>0 THEN VOL=8-VOL:SOUND 1,255,10,VOL:SOUND 2,252,10,VOL:
IF VOL=0 THEN CHIME= CHIME-1

IF QUARTER>0 THEN VOL=8-VOL:SOUND 1,63,10,VOL:

IF VOL=0 THEN QUARTER=QUARTER-1

IF PEEK(204)=SEC THEN 1800

GOTO 1000

DATA A2,00,E6,CB,A5,CB,C9,3C, 90,2A

DATA 86,CB,E6,CC,A5,CC,C9,3C

DATA 90,20,86,CC,E6,CD,A5,CD

DATA C9,3C,90,02,86,CD,E6,CE

DATA A5,CE,C9,0C,90,0C,86,CE

DATA E6,CF,A5,CF,C9,3C,90,02

DATA 86,CF,4C,62,E4,==

DIM HXS$(2)

PRINT "Setting up my timer..."

J=960:RESTORE 3000

READ HX$:IF HX$="==" THEN 4100

H=ASC(HX$(1,1))=-48:1IF H>9 THEN H=H-7

L=ASC(HXS$(2,2))~-48:1IF L>9 THEN L=L-7

POKE J,H*16+L:J=J+1:GOTO 4020

POKE 54286,0:POKE 548,192:POKE 549,3:POKE 54286,64

RETURN
0 DIM CR$(1) :CR$=CHRS$(155)
0 GRAPHICS 2:0PEN #1,4,0,"K:":POKE 752,1
0 SETCOLOR 0,8,12:SETCOLOR 3,9,4:SETCOLOR 2,0,0

0 PRINT #6; CRS CR$;CRS$;CRS;

0 PRINT #6-" {9 cl"

0 PRINT #6;" {C} CLOCK {C}"

0 PRINT #6;" {9 ¢

0 PRINT " {DOWN} COPYRIGHT (C) 1980 IRIDIS"
0 PRINT " {DOWN} PRESS RETURN TO BEGIN.";

0 GET #1,T:CLOSE #1:CLR :POKE 752,0:GOTO 100

Behind the Scenes

To maintain the clock picture, CLOCK needs to remember two sets
of positions: those of the end of the hour hand, and of the end
of the minute hand. Almost all of the code in CLOCK is concerned
with keeping track of the hand positions, and keeping the picture
intact.

HO() Horizontal positions in Outer circle: ends of the minute
hand

vVo() Vertical positions in OQuter circle: ditto

HI() Horizontal positions in Inner circle: the ends of the
hour hand

VI() Vertical positions in Inner circle: ditto

The second hand occupies the area between the end of the
hour hand and the end of the minute hand.

|-—hours—-|-—seconds—-|
|-————- minutes————————-|
===== Variables =====
HR the position of the hour hand (NOT the hour of the day!)
MIN the position of the minute hand
SEC the position of the second hand
FIFTHHR counts fifths—of-hours. Every fifth of an hour (twelve
minutes), the hour hand is moved one position. (This

variable is used only in setting up the time.)

OLDSEC value of SEC before the second changed

LASTMIN The value of MIN one second ago.

OLDMIN value of MIN before the minute changed

OLDHR value of HR before the 'hour’ changed

CHIME how many times the hour chime should sound

QUARTER how many times the quarter—hour chime should sound

VOL volume of the chimes (alternates between 0 and 8)
Other variables (any not mnamed above) are general use
temporary variables.

===== Constants =====
CIRCLE the circumference of a circle, in degrees
HCENT Thorizontal position of the center of the clock
VCENT vertical position of the center
LARGE length of the minute hand
SMALL length of the hour hand

===== The program =====
100 Clear the screen (actually just the text window).
110 Create the arrays.
128-180 Make Basic work in degrees, and set up the constants.
200 Call the subroutine to set up the timer

- 4 -

470

480
490

500-520
530
550
560-580
680

690
700
710-740
750
760
770-780
790-800
810
820
830-840

850
900

910

1000
1010

1100
1110
1120
1125

1130

Clear the text window, in preparation for getting the
time. Skip around the illegal-input message. (Clearing
the text window is needed despite line 100, because the
subroutine called from line 200 prints a message.)
Say that he typed in the time wrong, but politely.
If he blows the input, go to line 480, and say something
nasty.
Ask for the time.
Don’t intercept errors any more.
If it's twenty—-four—hour time, convert it to twelve-hour
time.
Make sure the time is a real ome (10:70:43 isn’t real).
Figure out which fifth of the hour it is, and where the
hour hand should be. (The minute and seconds hand
positions are already known.)
Tell the machine—language timer what time it ‘is.
Enter full screen, highest resolution graphics mode.
Make the clock light blue on a dark blue background.
N=number of dots around the clock (done for gonvenience).
J=counter for placement of the hour marks.
For each dot around the edge of the clock...
Find the vertical (V) and horizontal (H) positions of
the minute dots on a unit circle (a circle whose
radius is one unit).
Convert the position to that of the end of the minute
hand and remember the converted position.
Put the minute dot on the screen (out from the end of
the minute hand). ,
If this is the fifth dot since the last hour mark, put
up a new hour mark.
Convert the dot position to the end of the hour hand,
and remember the position.
End of loop
Find out what time it is now (drawing all those dots took
timel).
Go off and display the hands.

===== Main loop, keeping the clock picture on time.

Find out what time it is.

Set nup to erase clock hands

If the second hand isn’'t under the minute hand, erase it.
If the minute hand shouldn’t move, skip to hand-drawing
code.

Erase old minute hand (and possible part of the hour
hand) .

See if we'’re at a quarter hour, and arrange for a chime
if so.

See if we’re at a full hour, and arrange for a different
chime if so.

1140

If the hour hand should move, erase it.

1150 Draw the new minute and hour hands. We must draw the
hour hand even if it didn’t move, because erasing the
minute hand may have erased part of the hour hand.

1300 Prepare to draw the new second hand.

1310 If the the second hand isn’t under the minute hand, draw
it.

1320 Remember where the minute and second hands are right now,
so we can erase the right things next time around.

1330 Do the tick. I=I+1 is there so the sound is on 1long
enough to hear,

1410 If we are chiming the hour, turn the sound off if it was
on, and on if it was off. If we turned it off, that's
one less chime to do.

1420 Likewise for the quarter—hour chime.

1800 Kill time till a new second comes around.

1810 Go back and redraw the hands appropriately.
===== End of main loop.

3000-3060
The code for the machine—language timer routine. The
routine is called once every tick of the Atari's clock,
which ticks every sixtieth of a second. The equivalent
Basic code for it is:

TICK=TICK+1 : IF TICK<60 THEN RETURN
TICK=0 : SEC =SEC +1 : IF SEC <60 THEN RETURN
SEC =0 : MIN =MIN +1 : IF MIN >59 THEN MIN=0
FIFTHHR=FIFTHHR+1 : IF FIFTHHR<12 THEN RETURN
FIFTHHR=0 : HR =HR+1 : IF HR >59 THEN HR=0
RETURN
Note that HR holds where the hour hand is, not the actual
hour of the day.
===== The subroutine at 1line 4000 stows the machine
language away in a safe place.

4000 Make room to hold the hexadecimal ('hex') notation for
the machine code.

4005 Say what'’s happening.

4010 Arrange to read the data at line 3000. J tells where the
machine language goes. (For those of you who know
something of the innards of the Atari, the code goes into
the area where the IOCB's are kept, and so is safe. If
you don'’t know what IOCB’'s are, this aside 1is just to
calm the fears of those who know enough to worry about
esoteric details.)

4020 Read the hex for one byte of code. If the byte is "==",
we've run out of code, so stop already!

4030-4040

Convert the hex to decimal.

-/6 -

4050 Stuff the byte away, make J point to the next location
for the code, and go back for the next byte.

4100 POKE #1: Turn off interrupts. POKE #2 and #3: Tell the
Atari where the timer routine is. POKE #4: Turn
interrupts back on. (For the novices, the interrupts are
what run the Atari’s clock, and care must be taken
whenever they are meddled with, which is why they are
turned off and on again. When they are off, we can
meddle without fear. Even so, we must still be sure that
our meddling really does what we wanted it to).)

4200 Go back to wherever we came from.

Novice Notes

In each issue of Iridis I’'ll cover one or more computer topics to
help you understand what is going on inside your Atari.

As you probably know, computers are very good at doing what you
tell them to do. A computer "program” is simply a detailed set
of directions (or "recipe”) you tell the computer to follow.
Some folks who don’'t understand computers are in awe of how
"smart"” computers are. But computers aren’t smart at all: they
just follow directions! (I’'1l1 be the first to admit, however,
that complex systems that include computer hardware and software
can be impressive indeed. There is a significant debate among
computer science types about what it takes before you can say
that a computer system exhibits "intelligence”, but that's
another story.)

The programs in Iridis are mainly written in the computer
language called "Basic”. Basic is a fairly simple, easy—to—learn
way to tell computers what it is you want them to do. There are
many different versions or dialects of Basic. The most common
versions on microcomputers (including the Commodore Pet, the
Radio Shack TRS-80, and the Apple II) were all written by a
company called Microsoft. There is a major difference between
Atari’'s version of Basic and Microsoft’s version: Atari’s Basic
handles strings much more awkwardly than Microsoft's. What is a
'string’, you ask? In computerese, a string is some collection
of letters, numbers, and punctuation, all wrapped up in a neat
little package. For example, '"How are you?” is a string. To
store this string in our Atari, we'd do something 1like the
following:

100 DIM EXAMPLES$(20)
110 READ EXAMPLES$

120 PRINT EXAMPLE$
500 DATA How are you?

In 1line 106 we tell the computer to reserve 20 locations in its
memory for a character variable called EXAMPLES, (Note that a
trailing dollar-sign always means it is a character rather than a
numeric variable.) In line 110 we tell the computer to go to the
DATA statement and grab everything it finds (up to the next
comma, or the end of the data) and put it in the variable
EXAMPLES$. Finally, we have the computer print the contents of
EXAMPLEY on the screen in line 120. (Notice that there are no
double quotes in the DATA statement. The double quotes are used
only when the computer might mistake the string for something
else. For example, assume the program contains a statement that
says

130 EXAMPLE4=""xxxXXXXXXXXXXXXX"

If the double quotes weren’t there, the Atari would try to follow
the 'directions’ after the -equals sign. Since there are mno
directions there, things would fare rather badly.) In Microsoft
Basic, you don’t have to reserve space for character variables,
as we did in line 100. You just go merrily on your way, and the

system keeps track of things and grabs any space it needs along
the way

Here are some examples of things you need to be able to do with
characters, and how they are done on the Atari. Since lots of
the programs published in computer magazines use Microsoft Basic,
we've also shown how things are done that way.

In these examples, we assume that we’ve told the Atari how much
space to set aside for OLD$ and NEW$ as follows:

100 DIM OLD4(50), NEW4(50), STUFF(50)

(In the examples, we never use 50 locations. It's just easy to
go ahead and allow for a little more than we need.)

To find out how long a string is:

OLD$ = "Welcome to Atari Basic.”

HOWLONG = LEN{OLD$)

(HOWLONG will be 23.)

[This one is exactly the same for Microsoft!]

To take the first character of a strimng:

OLD$ "YES"
NEWs$ OLD4(1,1)
(NEWY$ will now contain the letter 'Y’'.)

[In Microsoft: NEW$ = LEFT$(OLD4,1)]

- 8 -

To "glue” (concatenate) the characters in STUFF4 to those
in OLD$ and put the result in NEW§:

OLDs = "ABC"
STUFF4 = "DEFGH"
NEW§ = OLD$: NEW4$ (LEN(NEW4)+1) = STUFF#$

(the result in NEW$ is "ABCDEFGH").

[In Microsoft: NEWY$ = OLD$ + STUFF$ 1]

Now, let’s grab some characters from the middle of a string:
OLD4 = "How are you?”

NEW4 = OLD4(5,9)
(the result in NEW4 is "are y").

[In Microsoft: NEW$ = MID4(OLD$,5,5)]

How about getting characters from the rightmost part of a string?

OLD4 "Not too bad, thanks.”
NEW4 = OLD{(14)
(the result is "thanks” in NEW$.)

{In Microsoft: NEW$
or: NEW4

RIGHT$ (OLD4,6)
MID4 (OLD$,14) >

Above, we mentioned how to find the length of a string, without
explaining what the length is, Essentially, the 1length of a
string is the number of letters, digits, etc. that are in the
string. Thus, the string "QUASIMODO” has a length of 9, since
there are nine letters in it. In Atari Basic, you must be very
careful not to confuse the length of a string with the size of
the space given over to hold the string. The size of the space
controls the longest string that can be held there, but the
string may be any length up to that, even zero (a string with no
letters in it at all). (A string with nothing in it is called a
'null string’. It is wuseful because there are times when you
must, for example, print a string, but don’'t want to print
anything. Printing a null string solves the problem. Since
there's nothing in the string, nothing will print.)

drawn, it draws a horizontal line from the just—-plotted point to
the first colored spot it finds to the right. The result is that

you get a pile of horizontal lines of the same color, filling in
an area with one color.

Although Fill behaves much 1like DRAWTO, wusing it requires a

different set of commands. To draw a line of color 1, you would
say

COLOR 1 : PLOT OLDX,OLDY : DRAWTO NEWX, NEWY

(If the graphics cursor is already at OLDX, OLDY [if that'’s where
the 1last point or line went tol], you don’t need the PLOT.) To do
a Fill with color 3

COLOR 3 : PLOT OLDX,OLDY : POSITION NEWX,NEWY
POKE 765, 3 : XIO 18,#6,0,0,”S:"” : PLOT NEWX, NEWY

The COLOR statement controls the color of the drawn 1line. (It
doesn’'t have to be the same color as the filled area.) The PLOT
tells where one end of the line is, and the POSITION tells where
the other end is. (The line hasn’t been drawn yet, though.) The
POKE sets the color of the filled area. It behaves exactly like
a COLOR statement, and takes the same set of numbers for colors.
Then, the XIO draws the line and does the fill. Finally, a PLOT
to the end of the line is needed to avoid a bug in Basic which
leaves the graphics cursor somewhere other than the 1line end
after a Fill. (The graphics cursor is just like a normal cursor,

except that it'’s invisible. It tells where the last thing put on
the screen went.)

===== Variables =====
c4 Holds the 'command’ to the drawing subroutine
H Horizontal destination for a line
v Vertical destination for a line

HORG Left side of drawing frame

VORG Top side of drawing frame

C Color of drawn lines

WASH Color of filled areas (it’s a painting term)

===== The Program =====

100 Make room for the Drawing Subroutine command

110 Se§ the Read Pointer to line 7000 (where the logo data
is

200 Go into high resolution graphics mode.

210-235 Choose the initial colors for the logo.

240 - Make the cursor invisible, so we domn't sully the text
window.

250 Set the left margin (to make the text window pretty).

- 12 -

i
|

300

Go off to the Drawing Subroutine, and draw the logo.

350 Kill some time, to allow him to admire the outline of the
logo.

400 (Go off to the routine that puts in colors in some
arbitrary order.)

410 (Go off to the <routine that puts in colors in the
built—-in order.)

500 Choose a random color, with a random brightness, and make
the logo letters that color.

510 Kill some time to let him admire the pretty colors.

520 Go back and pick another color.

600 The color sequence is controlled by the data at line 700.

610 Read a color and brightness. If the color number is less
than zero, we've run out of color sequence, so start over
from the beginning.

620 Make the letters the appropriate color.

630 Kill some time.

640 Go back for the next color in the sequence.

790 Display all the colors in some semblance of order.

800 For each brightness possible,

810 and For each color possible,

820 Change the color of the letters

830 Kill some time

840 Do next color and brightness.

850 We ran out of colors, so start over,
===== The Drawing Subroutine =====

5000 Get the mnext drawing command. If the command is a
number, it means 'draw a line to there'’, so go draw the
line.

5010 Is the command 'P’ (for Point or Plot)? If so, get the
position of the dot, and put a dot there.

5015 Is the command 'O’ (for Origin)? If so, get the new
upper—left frame cormner position.

5020 Is the command 'S’ (for Stop)? If so, go away. Our job
is done.

5030 Is the command 'C’' (for Color)? If so, change both the
line color and the wash color. (That way, filled-in
areas will match the lines surrounding them
automatically. If different colors are wanted (as with
the 1ogo), just use the Wash color command.)

5035 Is the command 'W' (for Wash color)? If so, get the new
Wash color.

5040 Last chance: if the command isn't 'F’ (for draw line with
Fill), throw it out and try again.

5050-5060

Get the destination of the 1line, and do the fill:
Position the graphics cursor at the other end of the
line, tell the Atari the color to fill with (the wash),
and draw the line (with filling).

_13...

5065 Patch over a bug in the Atari Fill command: the Atari,
after a fill the graphics cursor is left at the end of
the filling line (at the right end) rather than the end
of the drawn line (at the left end). With this plot, we
push the graphics cursor back to the end of the drawn

line.
5070 Go back around for another command.
5100 We must draw a line. Get the numeric value of the

'command’ (which was actually the first half of the
position of the other end of the line), and then read the
other half. Having the position, we need only draw a
line.

5900 Take a position relative to the corner of the frame, and
change it to a position on the screen.

Hacker’s Delight

Hacker's Delight is a column dedicated to the confirmed hacker
who wants to know everything possible about how his computer
works. (Hacker, n., a person who uses computers as a hobby.
Hackers are rarely content with the obvious ways to accomplish
something, prefering instead to use strange and devious methods
to a given end. A favorite pastime of hackers is to find out how
to do things which are ostensibly wundoable on their favorite
computer. For example, how to get six or eight different colors
on the screen at once, even though all the manuals claim that
five is an absolute limit.) In this space, we intend to publish
whatever information we can discover about the innards of the
Atari, and how to make use of things undocumented. Everyone is
invited to send us whatever they think might be of interest (and
even that which might not - you never know when you'll want some
odd piece of information). Occasionally, I'11 toss out
suggestions for things that ought to be discovered that, to our
knowledge, haven’t been (for example, how can you turn off the
BREAK key, or even better, make it a TRAPable error?).

As a hacker, you have undoubtedly looked at Atari’s cartridges

and wondered how they can do all that, when you can't get any
more than a GRAPHICS 7 area, without text in it, either. Your

text is confined to a dinky four—-line area at the bottom.

The truth is that, buried in the plastic case somewhere, there is
a special IC, whose sole purpose is to maintain the screen

display, with powers fully capable of. Great Feats of Video
Wizardry.

14.

The full story of the Video Chip, as we shall call it, takes wup
far more space than we can give (and we don’t know all there is
to know about it yet). However, to start you off, here’'s how to
get more graphics modes on the screen at one time (including a
couple that Basic doesn’t know about).

The Atari display is controlled by what may be called (borrowing
a term from the computer graphics field) a ’'display list’. That
is, there is a chunk of memory set aside that tells exactly how
the screen should look, where the stuff on the screen should come
from, and so on. The heart of creating your own screen formats
is knowing how to construct your own display list.

(Some definitions: a scanline is the thinnest possible 1line on
the screen. It is ome dot high. Any other line is a line
composed entirely of one graphics mode. Also, the bits in a byte
are numbered from 0 to 7, starting from the right, as 7 6 5 4 3 2
1 0. In other words, a byte with only bit 7 on equals 128, or
hex 80.) The general format of a display list is: a command that
tells where to get the screen contents from, followed by a series
of bytes telling how to display the contents, then another memory
address, then more formatting bytes, another address, more
formatting bytes, and so on, to the end of the list. Naturally,
there need only be one address, if you want to display only one
area of memory (as in text mode). The formatting bytes do NOT
all have to specify the same graphics mode. Every omne of them
can, if you 1like, specify a different mode. The chief
restriction is that the graphics mode selected by one formatting
byte extends to both sides of the screen, so you can cut the
screen only into horizontal pieces, not vertical ones.

In the display list, the bits in a byte have the following
meanings:

Bit 7 - Bit 7 has no visible effect.

Bit 6 — the Address bit — If this bit is on, the next two bytes
contain the address from which the screen contents should
be taken. If this bit is off, the memory displayed comes
immediately after the memory displayed by the previous
byte.

Bit 5 — Not known - the apparent effect is this: The line for a
byte with bit 5 off gets mashed flat, but only if the
byte before it had bit 5 on. The line is still there,
but it takes only one scanline. Most peculiar. (Someone
tell us what this bit really does, please!l)

Bit 4 — Another unknown bit. The apparent effect of this one is
to make the line occupy 20% more bytes than it normally
would, but to ignore the first and last 10%. That is,
the visible part is still x bytes wide, but there are
0.1x invisible bytes on either side of the visible part.
(Another mystery begging to be solved.)

- 15 -

Bits 3-0 -
the graphics type of this line of the screen. (I don't
call it the graphics mode to avoid confusion.)

There are fourteen graphics types available:

2 Normal text-mode display (one line's worth)

3 Text mode, but with an extra two scanlines after the text.

Also, some characters have the dots scrambled some.

4 A most peculiar mode. It is a text mode of sorts, but the

letters have colored fringes around them.

5 Same as type 4, but with the letters twice as high

6 Graphics mode 1 (again, for one line of text).

7 Graphics mode

8 Graphics mode

9 Graphics mode

10 Graphics mode

11 Graphics mode

12 Graphics mode
height.

13 Graphics mode

14 Graphics mode

15 Graphics mode

, but with the dots only half their wusual

, half-size dots

NI AN WEN

Normally, graphics types 8 and 9 use (and display) 10 bytes from
the screen memory. Types 6, 7, 10, 11, and 12 use 20 bytes, and
the rest use 40. If bit 4 is on, types 8 and 9 use 12 bytes, of
which the middle 10 are displayed. Types 6, 7, 10, 11, and 12
use 24 bytes, displaying the middle 20. The rest use 48 bytes,
with the middle 40 displayed.

Types 0 and 1 don’'t appear in the 1list because they are not
really graphics types. They cause the Atari to do things other
than display memory. Moreover, in them bits 6, 5, and 4 1lose
their usual meaning. Type O produces lines of the background
color (register 4). Bits 6, 5, and 4, treated as a single,
three-bit number, tell how many scanlines high the line is. The
height is the number plus 1, so that 000 is one scanline, 011 is
four scanlines, and so on. No memory is used by a type—-0 byte.

Type 1 seems to be the special-function type. Type 1 with bit 6
on (hex 41) marks the end of the display list. Type 1 with bit 6
off means ’'display list continued over there’. It is followed by
the (two-byte) address of where the display list continues. The
meanings (if any) of bits 4 and 5 for type 1 are unknown,

The normal text—mode display list (as you no doubt assume from

the above, there is a different display 1list made for each
graphics mode) looks like this (in hexadecimal):

16

| o— ey

70 70 70 42 40 5C 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 02 02 41

The first three bytes are type-0 (background) bytes, each
specifying eight scanlines of background, for a total of
twenty—four. This is the top border of the text area. Next is a
type-2 (text) byte, but with the Address bit (bit 6) on, so the
two bytes after it (40 5C) say where the screen memory is. This
displays the first line of text in the text area. Then there are
twenty-three more type—2 bytes, for the other twenty—three 1lines
of text. Finally, there is a type—1 (special) byte, with bit 6
on, so that is the end of the display list.

Another display list: this one is for graphics mode 2, with a
text window.

70 70 70 47 70 SE 07 07 07 07 07 07 07 07 07 42
60 SF 02 02 02 41

First there are the same three type—0 bytes, for the top border.
Then we have a type-7 (GR.2) byte, with the address tit on. The
next two bytes are the address for the screen memory. Next are
nine type—7 bytes, the rest of the graphics area. Next is a
type—2 byte, with address bit again (and two address bytes).
That starts the text area. Three more type—2 bytes fill out the
text area, and again, a type—1 byte to end the display list.

The GRAPHICS 3 display list, which ZAP uses, looks just like the
graphics mode 2 list, except that type—-8 bytes are wused, and
there are more of them. What ZAP does to get big letters is
this: it searches the display 1list to find the type-2 byte
marking the start of the text window. That byte, and the other
three type—2 bytes following it, are changed into type—-6 bytes,
forcing the same memory to be displayed as large letters.

The other bit of information needed is how to FIND the display
list. 'Tis simple: locations 560 and 561 contain the address of
the display list. In other words, DISPLAYLIST = PEEK(560) +
256*PEEK(561). Then, to print out the display list:

100 I =0
110 PRINT PEEK(DISPLAYLIST+I),"” ",
120 IF PEEK(DISPLAYLIST+I)<>65 THEN I=I+1:GOTO 110

Feel free to try anything you like with the display list. Since
it's all software or electromics, you can't hurt anything with a
nonsensical display list (I speak from experience). Also, if you
get yourself into a cormer, [RESET] will get you out, restoring
everything to normal.

._1'7_.

Zap

ZAP is an addictive game in which you control a worm which,
naturally enough, is going about in search of food. The program
begins in an ’'attract mode’, playing the game by itself. To play
it yourself, plug a joystick into jack 1 (the leftmost one),
press the [START] button, and go to it. (Many people find that
the joystick can be more reliably controlled if it is on a hard,
flat surface, like a table or a hardcover book.)

The rules are these: You control the worm, maneuvering it about
the screen with the joystick. The blue dots are food, and you
get points for hitting (and eating) them. (There are other
creatures about, mnone of which are shown, which are also eating
the blue things.) The red lines are walls, which you bounce off
of. The only fatal act is to run into yourself. The worm, being
as bright as most worms are, starts chomping on itself,
committing suicide. (If you run into a wall head-on, you will
bounce off, but right into yourself.)

For each food particle the worm eats, you get 10 points, plus a
bonus of one percent of your current score. Also, the worm's
body grows three new segments. Each time something else eats a
food particle, you lose 2 points. You are allowed to crash (into
yourself) five times. After the fifth crash, the game is over.

Between games, ZAP returns to attract mode, displaying both the
most recent score (labelled LAST), and the best score since the

program was started (labelled BEST). To start a new game, press
[START] again.

0 REM ZAP

1 REM COPYRIGHT(C) 1980 IRIDIS

2 REM BOX 550, GOLETA, CA. 93017

3 REM ALL RIGHTS RESERVED

10 REM AS OF 5 MAR 80

100 GOTO 10000

1000 REM * UPDATE TARGETS *

1010 REM ERASE A TARGET

1020 IF DOTS<MINDOTS OR RND(1)>DOTCHANCE THEN 1100

1030 DOTS=DOTS-1:LASTDOT=LASTDOT+1:IF LASTDOT>MAXDOTS THEN LASTDOT=1
1040 R=DOTROW (LASTDOT) : C=DOTCOL (LASTDOT) : LOCATE C,R,I:REM CHECK WHERE DOT WAS
1050 REM IF STILL DOT, ERASE IT, AND LOWER SCORE

1060 IF I=DOT THEN COLOR BLACK:PLOT C,R:IF PTS>0 THEN PTS=PTS-2

1100 REM PLACE A TARGET

1110 IF DOTS>=MAXDOTS OR RND (1) >DOTCHANCE THEN 1200

1120 REM FIND EMPTY SPOT

1130 R=INT(RND(1)* (MAXROW-MINROW-1)) +MINROW+1

1135 C=INT(RND(1l)* (MAXCOL-MINCOL-1))+MINCOL+1

1140 LOCATE C,R,I:IF I<K>BLACK THEN 1120

1150 DOTS=DOTS+1:FIRSTDOT=FIRSTDOT+1:IF FIRSTDOT>MAXDOTS THEN FIRSTDOT=1
1160 DOTROW (FIRSTDOT)=R:DOTCOL (FIRSTDOT)=C:COLOR DOT:PLOT C,R

1200 RETURN

2000 REM +--=--——mmmmme e +

2010 REM |THINGS WHICH HAPPEN |

2020 REM |ONCE PER WORM MOVEMENT |

2030 REM 4-———mmemem e +

2040
2050
2100
2110
2120
2130
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
10000
10010
10020
10030
10040
10045
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10300
10310
10320
10330

IF NOISEO0>0 THEN NOISE0=NOISEO-1:IF NOISEO0O=0 THEN SOUND
IF NOISE1>0 THEN NOISE1=NOISEl-1:IF NOISE1l=0 THEN SOUND
REM SHORTEN TAIL OF WORM

IF SEGS<MINSEGS THEN 2200
SEGS=SEGS-1:LASTSEG=LASTSEG+1:IF LASTSEG>MAXSEGS THEN LASTSEG=1
COLOR BLACK:PLOT SEGCOL (LASTSEG) , SEGROW (LASTSEG)

REM LENGTHEN HEAD OF WORM

IF SEGS>MINSEGS THEN 0

REM SEE WHERE HE WANTS TO GO

REM IGNORE HIM IN ATTRACT MODE

I=STICK(0) :IF ATTRACT THEN I=15

IF I<>15 THEN HSPEED=HCHANGE (I):VSPEED=VCHANGE(I):POKE 77,0

REM DETERMINE NEW HEAD POSITION
R=ROW+VSPEED:C=COL+HSPEED:LOCATE C,R,I

REM CAN HE GO THERE?

IF I<>EDGE THEN 2350

REM HE HIT THE BORDER. BOUNCE.

IF R<=MINROW OR R>=MAXROW THEN VSPEED=-~VSPEED

IF C<=MINCOL OR C>=MAXCOL THEN HSPEED=-HSPEED

SOUND 1,30,10,6:NOISEl=1
GOTO 2260

REM HE CAN GO THERE.

ROW=R:COL=C:COLOR SEGMENT:PLOT COL,ROW

FIRSTSEG=FIRSTSEG+1:IF FIRSTSEG>MAXSEGS THEN FIRSTSEG=1

SEGROW (FIRSTSEG) =ROW: SEGCOL (FIRSTSEG) =COL : SEGS=SEGS+1

REM BUT IS IT WISE?

IF I<>DOT THEN 2450

REM HE HIT A TARGET! .

SOUND 0,0,0,0:PTS=PTS+10+INT(0.01*PTS) :MINSEGS=MINSEGS+3

SOUND 0,33,12,6:NOISE0=2:GOTO 2500

IF I<>SEGMENT THEN 2500

REM HE HIT HIMSELF!

SOUND 1,0,0,0:REM DO CRASH SOUND
FOR I=0 TO 3:SOUND 0,29,0,15-4*I:FOR J=0 TO 10*2"I:NEXT J:NEXT I
SOUND 0,0,0,0:CRASH=1:GOTO 2510
GOSUB 1000
RETURN

REM +-—-=—mmmmmmc e +

REM |ONE TIME INITIALIZATION |

REM + ——— +

REM * LIMITS AND SIZES *

MAXDOTS=20:REM # TARGETS ALLOWED

MINDOTS=5:REM DON'T DELETE DOTS UNLESS MINDOTS ON SCREEN
MAXSEGS=250:REM LONGEST POSSIBLE WORM

MAXCRASHES=5:REM CRASHES PER GAME

REM * SCREEN CONTROL *

GRAPHICS 3:SETCOLOR 2,0,0

MINROW=0:MINCOL=0:MAXROW=19 :MAXCOL=39

REM DIDDLE VIDEO DISPLAY LIST

REM TO PRODUCE BIG LETTERS

SCRNMAP=PEEK (560) +256*PEEK (561)

IF PEEK(SCRNMAP)<>66 THEN SCRNMAP=SCRNMAP+1:GOTO 10130:REM FIND TEXT
REM MAKE LETTERS BIG

POKE SCRNMAP,70:POKE SCRNMAP+3,6:POKE SCRNMAP+4,6:POKE SCRNMAP+5,6
REM * COLORS (AND REGISTERS) *

BLACK=0:SEGMENT=1:DOT=2:EDGE=3

SETCOLOR 4,0,0:SETCOLOR 0,0,10

SETCOLOR 1,8,4:SETCOLOR 2,2,2

REM * DIMENSIONING ARRAYS *

DIM DOTROW (MAXDOTS) ,DOTCOL (MAXDOTS) :REM KEEPS TRACK OF TARGETS
DIM SEGROW (MAXSEGS) ,SEGCOL (MAXSEGS) :REM KEEPS TRACK OF WORM
DIM BL$(10) :REM FOR ALIGNING NUMBERS

DIM HCHANGE (15) ,VCHANGE (15) :REM STICK->DIRECTION TABLES

REM * ODDMENTS *

POKE 82,0:REM LEFT MARGIN TO ZERO

POKE 752,1:REM TURN OFF CURSOR

BESTPTS=-1:REM BEST SCORE SO FAR

0,0,0,0
1,0,0,0

._.19_

10340 ATTRACT=1:REM START IN ATTRACT MODE

10350 BL$=" {ESC}":REM LEADING BLANKS FOR NUMBERS
10400 REM SET UP JOYSTICK TO DIRECTION TABLES

10410 FOR I=0 TO 15:READ C,R:HCHANGE (I)=C:VCHANGE (I)=R:NEXT I
10420 DATA 0,0, 0,0, 0,0, 0,0, 0,0, 1,1, 1,-1, 1,0

10430 paTa 0,0, -1,1, -1,-1, -1,0, 0,0, 0,1, 0,-1, 0,0
11000 REM +=—mmmmmmmmmmmme o C o +

11010 REM |PER-GAME INITIALIZATION |

11020 REM +=—=——— e +

11030 PTS=0:REM SCORE SO FAR IN GAME

11040 CRASHES=0:REM NO CRASHES YET

11500 REM +===———mmm oo +
11510 REM |PER-CRASH INITIALIZATION |
11520 REM =——mmmmmmmmme e +

11525 FOR I=1 TO 200:NEXT I

11530 FIRSTDOT=0:LASTDOT=0:DOTS=0:REM NO TARGETS

11540 FIRSTSEG=0:LASTSEG=0:SEGS=0:REM NO WORM

11550 MINSEGS=16:REM INIT LENGTH 16

11560 ROW=MAXROW-1:COL=MAXCOL-1:HSPEED=-1:VSPEED=-1:REM INIT DIR AND SPEED
11600 REM DRAW BOARD

11610 PUT #6,125:COLOR EDGE

11620 PLOT MINCOL,MINROW:DRAWTO MINCOL,MAXROW:DRAWTO MAXCOL,MAXROW
11630 DRAWTO MAXCOL,MINROW:DRAWTO MINROW,MINROW

11650 REM * SET UP INITIAL TARGETS *

11660 DOTCHANCE=1

11670 IF DOTS<MINDOTS THEN GOSUB 1000:GOTO 11670

11675 FOR I=1 TO 100:NEXT I

11680 DOTCHANCE=0.1

11690 CRASH=0:REM NOT YET CRASHED

11700 IF ATTRACT=0 THEN 11900

11710 IF BESTPTS>=0 THEN 11750

11720 PRINT "{CLEAR} ZAP (C)1980 IRIDIS"

11730 PRINT "PRESS start TO PLAY. (NEEDS A JOYSTICK)"
11740 GOTO 11800

11750 PRINT " {CLEAR} last best";

11760 PRINT BLS (LEN(STRS (LASTPTS))) ; LASTPTS;

11770 PRINT BLS$ (LEN(STRS (BESTPTS))) ; BESTPTS;

11780 PRINT " PRESS start TO BEGIN"
11800 IF PEEK(53279)<>7 THEN ATTRACT=0:GOTO 11000
11810 GOSUB 2000:IF CRASH THEN 11500

11820 GOTO 11800

11900 PRINT "iCLEAR 2 DOWN}";

12000 PRINT "{2 UP}SCORE: ";PTS;" "

12010 PRINT "CRASHES: ";CRASHES

12020 GOSUB 2000:IF CRASH=0 THEN 12000

12100 CRASHES=CRASHES+1:IF CRASHES<5 THEN 11500

12110 LASTPTS=PTS:IF PTS>BESTPTS THEN BESTPTS=PTS:REM GAME OVER
12120 ATTRACT=1:GOTO 11000:REM BACK TO ATTRACT MODE

Behind the Scenes

The ZAP program keeps track of the positions of the worm segments
and the targets in a ’'queue’. A queue is something that you put
things into it at one end, and take them out at the other, like a
line at a grocery store (the British, in fact, refer to those

lines as 'queues’ [the computer people stole the word from
them]) .

- 20 -

’

Since queues contain a bunch of things, the obvious way to keep
them is in an array, since arrays exist to hold bunches of
things. (Horizon-broadening department: Arrays are not the only
way to keep queues. Some languages other than Basic allow you to
do queues in other ways. All of the other ways can be force—fit
into Basic, but it isn’'t really worth it. [A true-life example
of how some languages are better at various tasks than others.
Basic isn't very good at queue—handling.]) When you store a queue
in an array, there are two ways to put things in and take them
out. You can keep the ends of the queue in a fixed place, and
move the items around in the array (e.g. after taking item 1 out
of the queue, you move item 2 to where item 1 was, item 3 to
where item 2 was, and so forth). Alternatively, you can keep the
items where they'’re put, and move the ends around (when you take
item 1 out, you leave items 2 on alone, but remember to ignore
item 1 in the future). In either method, you need to keep track
of where in the array to put the next thing that 1s put into the
queue (you need to know where the line ends).

At first glance, the first method is better. Suppose your array
can hold twenty items. If you use the second method to keep the
queue, it would seem you'’d run out of room in the array. Even if
you ignore the removed items, they still take up space. Remove
twenty items, and the array is full of ignored items. If you
always move the items into the vacancies, you won’'t run out of
room until the array is full of wanted items. As it turns out,
if you use a trick, the second method is easier. The trick
allows you to re-use the ignored items. What you do is to
pretend that the ends of the array are connected, so your array
is a circle, like a roulette wheel. When either end of the queue
falls off one end of the array, make the other end of the array
the end of the queue. The Basic code to put something into the
queue is simple:

BACK=BACK+1: IF BACK)>ARRAYSIZE THEN BACK=0
ARRAY(BACK) = whatever

(BACK gets set to zero because arrays start at zero. Why waste a
perfectly good array item?) Taking something off the queue is
just as simple,

FRONT=FRONT+1 : IF FRONT>ARRAYSIZE THEN FRONT=0
whatever = ARRAY(FRONT)

Care must be taken that BACK and FRONT never pass each other, but

other than that everything works nearly automatically. Note that
if BACK and FRONT are equal, the queue is empty.

- 21 -

DOTROW ()
DOTCOL()
SEGROW ()
SEGCOL()

BL4 ()
HCHANGE ()
VCHANGE ()

ATTRACT
BESTPTS
CRASH
CRASHES
DOTCHANCE
LASTPTS
MINSEGS
PTS
SCRNMAP

ROW

CoL
HSPEED
VSPEED
FIRSTSEG
LASTSEG

SEGS
FIRSTDOT

LASTDOT
DOTS

MAXDOTS
MINDOTS

MAXSEGS

and

the target queue

and

the worm segment queue. Remember that the worm is
stored backwards, with the head of the worm at the
back of the queue, and the tail of the worm at the

front of the queue. This is because we want to erase
the worm tail-first.

hoéds blanks for lining up numbers

an

tell how much a position changes when it moves in omne
of eight directions. (They are dimensioned to 15
because the joystick can return numbers up to 15.)
===== Variables
says whether we’'re in attract mode or not
the best score since the program was started
notes if there’s been a crash lately

how many crashes so far this game

how likely a new target is

score for just—ended game

how long the worm is right now

the current score in the game

tells where the screen display list is kept

and

where the head of the worm is

and

what direction the worm is going
where the head of the worm (the
segment queue) is.
where the tail of
segment queue) is
how many segments there are in the worm at present
where the newest target (the back of the target queue)
is

where the oldest
queune) is

how many targets are on the screen (counting those
which have been hit by the worm, since they’'re still
in the target queue).

back of the worm

the worm (the front of the worm

target (the front of the target

————— Constants
maximum number of targets on the screen at one time
minimum number of targets on-screen (there may
actually be fewer, but ZAP won't remove any unless
there are at least that many)

maximum number of segments to a worm

MAXCRASHES number of crashes allowed per game

- 22 -

MINROW
MAXROW
MINCOL
MAXCOL

100

1000
1020

1030

1040
1060

1100
1110

1130
1140
1150

1160
1200

2040
2050

2100
2110

2120
2130

and
tell the top and bottom rows on the board
and

tell the leftmost and rightmost columns

the color number for the background

the color number for the targets

the color number for the worm

the color number for the border of the board

(REM statements will be ignored whenever it's expedient.)
Skip around the subroutines. They are first to cut down
on the time needed to find them on GOSUBs.

== Target handler ==

If there are too few targets on the screen already, or if
we don't feel like it, skip erasing a target, and go see
about putting another on the screen.

Note that there will be one less target on the screen.
Take the oldest target off the queue.

See what is where we put the target.

If there'’s still a target there, he missed it. Take it
off, and penalize him for missing it.

How about putting up a target?

If there are already enough targets, or we don't feel
like it, don’'t put a target up.

Pick a location for the target.

Take a look at the proposed 1location to see if it's
empty. If it isn’'t, go back and pick a different
location. :

Note that there will be one more target on the screen.
Make room in the queue for the new target.

Put the target in the queue, and on the screen.

Go back to whatever you were doing before you starting
fiddling with targets.

===== The main subroutine, which moves the worm, fiddles

gi?h the targets, and does most other things that need
oing.

If there’s a sound on channel 0, and it's time to turn it

off, do so.

Likewise with channel 1.

== Move the worm

If the worm is shorter than it should be (he hit a target
lately, perhaps), don't remove the tail end. Go directly
to where it grows.

Note that the worm is one segment shorter. Take the tail
segment off the queue.

Erase the last segment.

- 23 -

2210

If the worm is longer than it should be, leave it alomne.

(It should never happen, but one of the prime Rules of
Programming is "Don’t take chances”. If you assume it
won't happen, it will. (Umpteenth corollary to Murphy'’s
Law.))

2240 See which way the joystick'’s been pushed. If we're in
attract mode, we don’t care about the joystick, so
pretend it's straight up.

2250 If the joystick is pushed to one side, adjust the worm’s
path appropriately, and turn off glitch mode (see
elsewhere for what glitch mode is).

2270 Compute the new position of the worm’s head, and see
what's there now.

2290 If it’s not the edge of the board, go check for something
else (at line 2350)

2300 It’'s the edge of the board. Make him bounce.

2310 If he hit a top or bottom wall, send him up if he's going
down, and vice versa.

2320 If he hit a side wall, send him left if he's going right,
and vice versa.

2330 Turn on the bounce sound. Note that we did so, so it can
be turned off later.

2340 Now that the bounce has been done, go back and see where
he bounced to.

2350 It's not the wall he hit.

2360 Remember his new location, and put new segment on the
screen.

2380-2390
Record new segment in the queue, and note that there's
one more segment to the worm,

2400 Now we see if his new position is hazardous.

2410 If he did NOT hit a target, go off to see what he did
hit.

2430 Turn off the target sound, in case it'’s still on from a
previous target. Increase his score, as well as his
length.

2440 Turn on the target sound, and make a note that it’s on.
Go and fiddle with the other targets.

2450 It's not a target, either., Was it.... himself? If not,
go play with the targets.

2460 He blew it! The klutz ran into himself.

2470 Turn off bounce sound.

2486 Make the crash sound (Esoterica depariment: it's white
noise with an exponetial decay.)

2490 Note that he just crashed, and go back to whatever we
were doing before we started all this.

2500 Go fiddle with the targets, perhaps removing one, perhaps
putting one up.

2510 Go back to whatever we were doing before.

- 24 -

===== Set up things that stay set

10000-10060

10080

10090
10120
10130
10150

Set limits on sizes of arrays, the worm, the number of
targets, etc.

Choose the graphics mode with the biggest squares, and
make the text window black.

Remember the size of the screen.

Find the video display 1list.

Search the display list for the start of the text window.
Change the text window into a GRAPHICS 1 window.

10170-10190

Choose the colors for everything.

10200-10240

10310
10320
10330
10340
10350

Create all the arrays and strings we need.

Set the left margin to zero.

Turn off the cursor.

No best score as yet.

Go into attract mode, to tempt him into playing.

Set up some leading blanks, for right—justifying numbers
in the text window. There is a trailing {ESC} in the
string. This is because Atari Basic doesn’t permit
taking substrings with no characters in them. So,
instead of taking substrings with zero to nine characters
in them, we take substrings with one to ten, and have the
last character be one that is invisible, so the effect is
as if we had one less character.

10400-10430

11000
11030
11040
11500

11525

11530
11540
11550
- 11560

11610

Set up the tables that tell how much to change the
position of the head of the worm for each way the
joystick can be held. Most of those 0,0 entries are for
codes that the STICK() function can't return.

===== Set things that need to be re—set before each game.
No score, as yet.

No crashes yet, either.

===== Set things that need to be re—set after each crash.
(We gretend that there was a crash just before each
game.

Kill a little time, just to let the player realize that
he's crashed. (People just don’'t react as fast as
computers do.)

Dispose of any remaining targets.

Dispose of any remaining worm, for that matter.

Create a new worm, whose length is 16 segments.

Start it off heading to the wupper left, from the
lower—right corner of the board.

Erase the old board (and the text window with it,
unfortunately). Set the next—drawn lines to be the color
of the edge of the board.

- 25 -

11620-11630

Draw the edge of the board.

11650-11675

11675
11680

11690

Call the target—fiddling routine until there are enough
targets on the board to permit play. DOTCHANCE is set to
1 so we don't waste time letting the routine decide it
doesn’t want to put up targets.

More time killing, to let the player realize there's a
new board already.

Let the target—fiddling routine skip putting up targets
again. With DOTCHANCE set to 0.1 (1/10), it will put wup
a new target one time in every ten it is called, on the
average. '

Say that he hasn’t crashed yet.

11700-11710

Choose what to say in the text window. If we're in the
midst of a game, give the score. If we're in attract
mode, but after a game, give both the 1latest and best
scores. Otherwise, we're just starting off, so give the
name and copyright notice.

11720-11740

11750
11760

11770
11780

11800

Tell people what we are, and who owns us.

Print the last and best score labels.

Print the latest score. We print an appropriate number
of blanks to 1line the number up with its label. The
substring starts with the length of the printed number,
so we'll get fewer blanks as the number gets longer.
Print the best score.

Put up a divider, and tell the player how to start a new
game.

We're in attract mode. Peek at the [START] button, and
if it is down, drop out of attract mode, and start a real
game. (Actually, the peek checks only if any of [STARTI],
[OPTION], or [SELECT] is pressed. Atari Basic has no
convenient way of picking [START] from the others, so we
look for any of them. After all, [START] and [SELECT]
might be pressed at the same time, and that should count
as pressing [START].)

11810-11820

Move the worm one position. If it crashed (and it will,
sooner or later), start the game over. Otherwise, move
it again.

11900-12010

12020
12100
12110
12120

At 1last! A real game! Print the score, and how many
crashes there were.

Keep moving the worm wuntil it crashes. (Again,
eventually it will.) ’
Tally up another crash., If he has more lives left, set
him up another worm, and let him go again.

Note score for the just—finished game, and see if we have
a new record score.

Since game is over, we go back into attract mode.
_26..

i

Oddments

ODDMENTS is the repository for all the facts, fancies, and rumors
that don’t warrant an article of their own. We encourage
contributions, and will acknowledge anything we see fit to use.
Here's your chance to see your name in print.

A After the advent of video games, it was discovered that, when
they were left on too long, a picture of the game was 'burned’
into the screen, so you saw it even when you weren't playing the
game. The Atari has a feature which is intended to prevent this
from happening with it. After about nine minutes go by without
anything happening at the keyboard, the Atari starts
(temporarily) changing the color registers (and therefore the

colors on the screen.) This prevents any one phosphor (the stuff
that glows) from getting over—used.

We have, for convenience, declared that the Atari is in 'glitch
mode’' when it is changing the colors for you. (The name arose
because the color-changing wasn’'t documented when it first
happened to us, and it appeared that the Atari had a glitch in it
somewhere.) If you have a program which uses joysticks or paddles
exclusively, the keyboard may well go unused for the requisite
nine minutes, allowing the Atari to go into glitch mode. You can
prevent that by POKEing a zero into location 77 every so often
(less than nine minutes). (Location 77 is the timer for glitch
mode. Putting a zero in it resets the timer back to the start.)

A When doing such manipulations of strings as are possible, it is
sometimes convenient to be able to make a string a specific
length. To make a string N characters long, assign some SINGLE
character to the Nth character of the string. For example, to
make X4 11 characters long, type

X*(ll) = MANM

If you don’t want to change the string, assign the current Nth
character:

X4(11) = X4(11,11)

A For those who haven't been raised with (by?) computers: the
control key (marked CTRL on the Atari) is a special kind of shift
key. When it is pressed, any other key that is pressed at the
same time will produce a different character from normal. For
example, when the Atari is in lower—case mode, pressing the 'A’
key gives you a lower—case A. Shifted 'A’' gives you an
upper—case A. Control-A (or ctrl-A, as we write it everywhere
else) gives you a sideways T (one of the Atari’s funny
characters). The control key pressed by itself does nothing, any
more than the shift key, pressed by itself, does.

..2'7_.

Polygons

POLYGONS is entertainment, nothing more and nothing less. It
does show off the high resolution graphics capabilities of the
Atari rather nicely, and is fun to watch. It will not balance
your checkbook, compute the interest on your Swiss bank account,
or make you a better person. We think you'’ll enjoy it anyway.

0 REM POLYGONS

1 REM COPYRIGHT(C) 1980 IRIDIS

2 REM BOX 550, GOLETA, CA. 93017

3 REM ALL RIGHTS RESERVED

10 REM AS OF MARCH 5 1980

90 GOSUB 30000

100 MAX=32:MIN=6:DELAY=50:LET CONTRAST=4:INTERVAL=1:START=1
110 DIM R(2*MAX),C(2*MAX) :DEG

120 CIRCLE=360

130 GRAPHICS 8+16

140 SETCOLOR 2,0,0

150 SETCOLOR 4,0,0

160 SETCOLOR 1,0,14

170 COLOR 1

180 KEYCODE=764

185 SPKR=53279

300 N=INT(RND(1l)* (MAX-MIN))+MIN

310 FOR I=0 TO N-1

320 R(I)=95*SIN(CIRCLE*I/N)+96

325 C(I)=95*COS(CIRCLE*I/N)+160

330 R(I+N)=R(I):C(I+N)=C(I)

335 NEXT I

340 FOR I=N TO MAX:REM KILL SOME TIME

345 T=SIN(I):T=COS(Y)

350 NEXT I

355 FOR I=1 TO DELAY:NEXT I

400 I=INT(RND(1)*16)

410 B1=INT(RND(1)*8)*2:B2=INT(RND(1)*8)*2
420 IF ABS(B1-B2)<CONTRAST THEN 410

450 GOSUB 900:IF T=255 THEN 470

460 I=I+1:IF I>100 THEN POKE SPKR,0:I=0

465 GOSUB 900:IF T=255 THEN 460

470 PUT #6,125

475 SETCOLOR 4,I,Bl

480 SETCOLOR 2,I,Bl

485 SETCOLOR 1,I,B2

600 FOR SKIP=START TO INT(N/2) STEP INTERVAL
610 IF RND(1)>0.5 THEN 650

620 FOR I=0 TO N-1

630 PLOT C(I),R(I):DRAWTO C(I+SKIP),R(I+SKIP)
640 NEXT I

650 NEXT SKIP

660 POKE 77,0:REM KILL GLITCH MODE

670 FOR I=1 TO 50:POKE SPKR,0:NEXT I

680 GOTO 300

900 T=PEEK(764) :POKE 764,255 :RETURN

30000 DIM CR$(1):CR$=CHR$(155)

30010 GRAPHICS 2:0PEN #1,4,0,"K:":POKE 752,1
30020 SETCOLOR 0,8,12:SETCOLOR 3,9,4:SETCOLOR 2,0,0
30030 PRINT #6;CRS$;CRS;CRS$;CRS;

30040 PRINT #6;" {12 ¢c}"

30050 PRINT #6;" {C} POLYGONS {C}"

30060 PRINT #6;" {12 ¢}"

30070 PRINT " {DOWN} COPYRIGHT (C) 1980 IRIDIS"
30080 PRINT " {DOWN} PRESS RETURN TO BEGIN.";

30090 GET #1,T:CLOSE #1:CLR :POKE 752,0:GOTO 100

- 28 -

Behind the Scenes

Basically, POLYGONS figures out where the cormers of the polygon
are, and then draws lines between them. The lines are drawn in
sets, each set connecting all the cormers that are x cormners
apart (where x may be any number up to the total number of
corners). When that set is done, POLYGONS proceeds to draw lines
between corners that are x+1 corners apart, and so on.

R() holds the row (vertical) positions of the polygon cormers
Cc() holds the column (horizontal) positions of the polygon
corners
===== Variables =====
MIN least number of sides on a polygon
MAX greatest number of sides on a polygon

DELAY time to kill after calculating corners of polygon
CONTRAST minimum contrast between lines and background

Bl brightness of background
B2 brightness of lines
N number of points in polygon being drawn

INTERVAL after drawing lines between corners that are x cormners
apart, draw lines between ones that are x+INTERVAL
corners apart,.

START don’'t draw lines between corners that are 1less than
START corners apart
SKIP draw this set of lines between corners that are exactly

SKIP corners apart (i.e. skip SKIP corners)

===== Constants =====
KEYCODE where, in memory, the code of the last key press is kept
SPKR where to poke to make the built—in speaker click
CIRCLE the circumference of a circle, in radians

===== The Program =====
100 Set up various initial values for the variables.
110 Create the arrays R() and C(). They are 2*MAX items long

because the corner positions are stored twice, to make
the drawing easier.

120 Calculate the size of a circle.

130 Select the graphics mode we want (highest resolution +

_ full screen)

140-160 Make the screen black. (Setting color register 1 doesn't
really do anything here, but is included for
completeness.)

170 Make drawn lines a different color from the background.
(Which color depends on the color register settings.)
180 Note where to find key—-pressed code.

- 29 -

190
300
310-335

340-350

400
410
420
450

460-465

470
475-485

600
610

620-640
650
660

670
680

900

Note where to stuff a zero to make the speaker click.
===== The main loop, choosing and drawing polygons

Pick how many sides (and cornmers) the polygon will have.
A number between MIN and MAX will be chosen.

Figure out where the corners will be, and remember the
positions. The +96 and +160 are to center the polygon on
the screen.

Kill enough time so that every time we produce a new
polygon, it takes about the same amount of time, however
many sides it may have.

Pick a color for the background (and lines, since they're
the same in graphics mode 8).

Pick a brightness for the background, and another for the
lines.

If the two brightnesses are too close together, throw 'em
out. Go back to line 410 to pick two more brightnesses.
Take a look and see if he pressed a key. (If T<>255, he
did.) If he didn’t, go off and draw the new polygon. If
he did, leave the old polygon up until he presses another
key.

Wait wuntil he presses the other key. Make the speaker
click every so often to remind him that we're waiting for
him to do something.

Erase the screen.

Set the colors of the 1linmes and background as chosen
earlier.

===== The polygon-drawing loop starts here. Overall, the
loop finds corners of the polygon SKIP points apart, and
draws a line between them.

Select which set of lines we’ll even consider drawing.
Don’t draw some of the lines (for variety). Effectively,
it's heads we draw, tails we don't.

Go to each corner of the polygon, and draw a line to the
corner SKIP points away, clockwise.

Add INTERVAL to SKIP. If we haven'’t connected all the
points, go back and connect the ones we missed.

Kil% glitch mode. (See elsewhere for what glitch mode
is.

Make the speaker buzz, to say the polygon is domne.

Go back and create another polygon.

===== Subroutine to check for a keypress i
See if a key was pressed, and remember which one, if any.
Then tell the Atari that, actually, nothing was pressed.
(The Atari is gullible about that.)

- 30 -

About IRIDIS Listings . ..

As you might have mnoticed, the Atari has a number of peculiar
characters that only the Atari can print. Needless to say, that
presents us with a problem: we intend to print listings, and
listings tend to be full of characters we can't print. As a way
out, we have come up with a set of conventions for displaying
those unprintable characters. (We must acknowledge our debt to
the People’s - Computer Company, publishers of Recreational
Computing, whose similar notation for the Commodore Pet’'s funny
characters gave us the inspiration for our notation for the
Atari'’s characters.)

The notation we will use has two basic rules: anything underlined
is in reverse video, and anything in braces ({}) is special.
Anything else you see is just what it appears to be.

The characters in braces have some more rules attached. A single
letter or punctuation mark represents a control character (which
comes out when you hold the control key (marked CTRL) down while
pressing another key). For example, {C} is ctrl-C, and {.} is
ctrl-period. A word is the name for a key, usually the name
found on the key itself ({CLEAR} is the key labelled 'CLEAR’). A

number says that the next key occurs that many times.

To clear the screen, and then go to the middle of the screem, our
listings would say

{CLEAR 12 DOWN 20 RIGHT}

You would type the CLEAR key, the DOWN (ctfl—equals) key 12
times, and the RIGHT (ctrl-star) key 20 times.

A three—of-hearts would appear in our listings as

3(,}
You would type a 3, followed by a ctrl-comma. Since the 3 was
outside of braces, it represents itself. The comma, on the other
hand, is inside braces, and so represents a ctrl-comma, or a
heart.
" A square with a cross on it would be listed as

{Q W E DOWN 3 LEFT A S D DOWN 3 LEFT Z X C}
You would type ctrl-Q, ctrl-W, ctrl-E, the DOWN (ctrl-equals)

key, the LEFT (ctrl-plus) key 3 times, ctrl—-A, ctrl-S, ctrl-D,
the DOWN key, the LEFT key 3 times, ctrl-Z, ctrl-X, and ctrl-C.

31

*sbut3isTT sTprar ut ieadde
S1930®vIRYD Tae]ly MOH

SNUTW-TI3D
dVY.L
dVL-33TYs
1e3s-T130
snTd-Ta30
193e21b-3JTYS
1931e91b-T130

osd

sTenba-T130

AOVd-33ITYsS

MOVE-Ta3D

dVL-TI39

SS9T-TX30 D5 10 SSdT-3JTYS
¢-1130

Aovd

oS3
|
osd
0S4
oS3
J5d
Jsd
oS3
oS4
oS4
osi
JS8d
osd
oS54
oSsH

UOTOOTWIS-TI3D
potiad-T1a130
PWWOD-TI3D

ST iels

! ST uoTooTWSS
+ ST sn1d
* s1 poTaad
- ST snutw
> ST SsaT
< ST 193ea1b
= ST stenba
1 sT BuuIoD
———== 30N -—=-
{an} £

{dvi} 4

{avil 1ds} =
{IHOIY¥} =
{1431} =
{INIT SNI} £z
{9vHD SNI} %
{osda} %

{NMOa} %
{aNIT T13a} £E
{avHD T3a} £
{avy 9710} E:
{9qvdT10} %
{1134} &
{Movd} &

{*} &

{*} &

{'} &

Z-T130
XA-TI130
X-T130
M-TI130
A-T13D
n-1130
IL-T130
S-T130
¥-T130
0-T1130
d-1130
0-T130
N-T130
W-TI130
T-T130
M-T130
£-T130
I-T130
H-T139
5-T1130
J-T130
q-T130
a-T113o
0-T130
g-1130
¥-T130

{z}
{X}
{x}
{M}
{A}
{n}
{1}
{s}
{a}
{0}
{a}
{0}
{N}
{w}
{1}
{a}
{r}
{1}
{H}
{9}
{4}
{3}
{al
{0}
{d}
{¥}

Bomme B § oo il [Bl et

by P —— ““‘Ih ,ﬂ“'h -q“m 1 .d“m it w i

:2dA3 nogx

tsn

TRV

:adXk3 nox :sn

:TIR3VY

- 32 -

